Charm Baryon Results from BaBar

Veronique Ziegler SLAC National Accelerator Laboratory

Representing the BaBar Collaboration

MENU 2010

Williamsburg, May 31-June 4, 2010

Outline

- Introduction: BaBar as a charm factory
- Spectroscopy
- Production studies
- Studies of excited Cascade states produced in charm baryon decays
- Future possibilities

BaBar as a Charm Baryon Factory

Provides access to rare decay modes & High precision studies of charm baryon properties ...

Charm Baryon Spectroscopy

Observation of new decay modes First observation of charm <u>baryon</u> to charm <u>meson</u> decay

Evidence for new states

Charm Baryon to Charm Meson Decay

- Observation of two states decaying to **D**⁰ p
 - previously observed $\Lambda_c(2880)^+$ (in $\Lambda_c \pi^+ \pi^-$) [Q~317 MeV/c²]
 - BaBar measurements from D⁰p [Q~79 MeV/c² → much greater precision]: M = 2881.9±0.1(stat)±0.5(syst) MeV/c² PRL 98, 012001 (2007)
 - Γ = 5.8±1.5(stat)±1.1(syst) MeV [First measurement]
 - new state:

M = 2939.8±1.3(stat)±1.0(syst) MeV/c²

 Γ = 17.5±5.2(stat)±5.9(syst) MeV

- First observation of a charm baryon decaying to a charm meson
- No evidence in D⁺p of doubly charged partners
 - Signals correspond to observation of excited Λ_c states, not Σ_c states

$\Xi_{u,d}^{0,+}$ The Search for *charm* Cascades Decaying to $\Lambda_c^+ \mathbf{K}^- (\mathbf{K_s}) \pi^{+(-)}$ and $\Lambda_c^+ \mathbf{K}^- (\mathbf{K_s}) \pi^- \pi^+$ Final States

- Confirmation of the existence of the $\Xi_c(2980)^+$, $\Xi_c(3077)^+$ and $\Xi_c(3077)^0$
- Evidence for the $\Xi_{c}(3055)^{+}$ and $\Xi_{c}(3123)^{+}$

 \rightarrow natural widths consistent with strongly decaying states

The $\Xi_{c}(2980)^{+,0}$ and $\Xi_{c}(3077)^{+,0}$ seen in decays in which the s and c quark are in separate hadrons

\rightarrow implications for the internal quark interactions inside these states

- predicted excited charm baryons with $J^P = 1/2^{\pm}$, $3/2^{\pm}$
- $J^P = 5/2^+$
- radial excitations

S. Migura, D. Merten, B. Metsch, and H. R. Petry, Eur. Phys. J. A 28, 41 (2006).
H. Garcilazo, J. Vijande, and A. Valcarce, J. Phys. G 34, 961 (2007).

J. L. Rosner, J. Phys. G 34, S127 (2007).
C. Chen, X. L. Chen, X. Liu, W. Z. Deng, and S. L. Zhu, Phys. Rev. D 75, 094017 (2007).

 $\Lambda_c^+ \to p K_S^0 \pi^+ \pi^ \Lambda_c^+ \to \Lambda \pi^+$ $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^+$

 $\Sigma_{\rm c}(2520)^{++}$ and $\Sigma_{\rm c}(2455)^{++}$ in the fit \succ show the M($\Lambda_{\rm c}^{+} {\rm K}^{-} {\pi}^{+}$) distribution for M($\Lambda_{\rm c}^{+} {\pi}^{+}$) ranges w/in 3- σ of the $\Sigma_{\rm c}(2455)^{++}$ and 2- σ of the $\Sigma_{\rm c}(2520)^{++}$

distribution M(Λ_c^+ K⁻ π^+) versus M($\Lambda_c^+ \pi^+$)

incorporate intermediate resonances

 $M(\Lambda_c^+K^-\pi^+)$ (GeV/c²)

) nor $(\Lambda_c^+ K^- \pi^+ \pi^+)$

 $\left[8 \right]$

(Ω_{c}^{*}) The Search for the Ω_{c}^{*} ($J^{P}=3/2^{+}$) PRL 97, 232001 (2006)

- All L=0 singly-charm baryons discovered, J^P=3/2⁺ Ω_c^{*}(*css*) state missing
- Splitting M(Ω_c^{*})-M(Ω_c) predictions range from ~70 -100 MeV/c²
- Search for Ω_c^* in $e^+e^- \rightarrow \Omega_c^* X$ processes

$$\begin{split} &\Omega_c^0 \to \Omega^- \pi^+, \ \Omega^- \to \Lambda K^- \\ &\Omega_c^0 \to \Omega^- \pi^+ \pi^0, \ \Omega^- \to \Lambda K^- \\ &\Omega_c^0 \to \Omega^- \pi^+ \pi^- \pi^+, \ \Omega^- \to \Lambda K^- \\ &\Omega_c^0 \to \Xi^- K^- \pi^+ \pi^+, \ \Xi^- \to \Lambda \pi^- \end{split}$$

Observation of $\Omega_{c}^{*} \rightarrow \Omega_{c}^{0} \gamma$

- Splitting $M(\Omega_c^*)-M(\Omega_c^0)$ = 70.8±1.0(*stat*)±1.1(*syst*) MeV/c²
- > consistent with pQCD predictions $\rightarrow M(\Omega_c^*)=2768.3\pm 3.0 \text{ MeV/c}^2$
- Ratio of the inclusive production cross sections

$$R = \frac{\sigma(e^+e^- \to \Omega_c^* X, x_p(\Omega_c^* > 0.5))}{\sigma(e^+e^- \to \Omega_c^0 X, x_p(\Omega_c^0 > 0.5))}$$
$$= 1.01 \pm 0.23(stat) \pm 0.11(syst)$$

The Search for the $\Xi_{cc}^{+(+)}$ Baryons in the $\Lambda_c^+ K^- \pi^+ (\pi^+)$ and $\Xi_c^0 \pi^+ (\pi^+)$ Final States

SELEX [*using Fermilab 600 GeV/c charged hyperon beam*] reported evidence for *cc* baryons with mass 3518.7 MeV/c² decaying to Λ_c⁺ K⁻ π⁺ and p D⁺K⁻ and with mass 3460 MeV/c² decaying to Λ_c⁺K⁻π⁺π⁺ PRL 89, 112001(2002), Phys.Lett. B 628, 18(2005)
The mass difference Ξ⁺_{cc} - Ξ⁺⁺_{cc} ~ 60 MeV/c²

- measured by SELEX inconsistent with the J=1/2 isodoublet interpretation
- The photoproduction experiment FOCUS observed ~12 x more Λ_c^{+} s than SELEX *and yet* did **not observe** Ξ_{cc} states Nucl.Phys. **B**, Proc.Suppl. 115, 33 (2003)
- Predicted cross section values for doubly charm production in e+e- collisions at c.m. energy near 10.58 GeV range from 1 to 250 fb corresponding to rates $O(10^{-4} - 10^{-2})$ • BaBar searched for Ξ_{cc} states in 232 fb⁻¹ of data and found no evidence of doubly charm baryons PRD 74, 011103(R) (2006)

(11)

Charm Baryon Production at the Y(4S) Resonance

Production from B decays e⁺e⁻ Continuum Production

Charm Baryon Production at the Y(4S) Resonance Typical c.m. momentum (p*) distribution

Production from B decays (+some continuum) Continuum production

Measurements of BR($\overline{B}^0 \to \Lambda_c^+ \overline{p}$) and BR($B^- \to \Lambda_c^+ \overline{p} \pi^-$) and Studies of $\Lambda_c^+ \pi^-$ Resonances

$$\frac{\mathcal{B}(B^- \to \Lambda_c^+ \overline{p}\pi^-)}{\mathcal{B}(\overline{B}{}^0 \to \Lambda_c^+ \overline{p})} = 15.4 \pm 1.8 \pm 0.3$$

$$\frac{\mathcal{B}(B^- \to \Sigma_c (2455)^0 \overline{p})}{\mathcal{B}(B^- \to \Lambda_c^+ \overline{p} \pi^-)} = (12.3 \pm 1.2 \pm 0.8) \times 10^{-2}$$
$$\frac{\mathcal{B}(B^- \to \Sigma_c (2800)^0 \overline{p})}{\mathcal{B}(B^- \to \Lambda_c^+ \overline{p} \pi^-)} = (11.7 \pm 2.3 \pm 2.4) \times 10^{-2}$$
$$\frac{\mathcal{B}(B^- \to \Sigma_c (2520)^0 \overline{p})}{\mathcal{B}(B^- \to \Lambda_c^+ \overline{p} \pi^-)} < 0.9 \times 10^{-2} (90\% \text{ C.L.})$$

- PHYSICAL REVIEW D 78, 112003 (2008)
- Predicted favored B to baryon—antibaryon decay rate for baryon and antibaryon close in phase space (i.e. 3-body final state)

W.-S. Hou and A. Soni, Phys. Rev. Lett. 86, 4247 (2001).

- Study of baryon production in B decays by comparison of $(\overline{B}^0 \rightarrow \Lambda_c^{+}\overline{p})$ and $(B^- \rightarrow \Lambda_c^{+}p \pi^{-})$ decay rates
- Use of 3-body decay to study $\Lambda_c^+\pi^-$
- resonant structures
 - mass, width of Σ_c(2455)
 spin of Σ_c(2455)

Fit Parameter	Value	PDG Value [8]
$Y_{\rm sig}$	1522 ± 149	
$m_R (\text{GeV}/c^2)$	2.4540 ± 0.0002	2.4538 ± 0.0002
Γ_R (MeV)	2.6 ± 0.5	2.2 ± 0.4

$\Xi_{\rm c}$ ' Production

• Confirmation of CLEO $[0.5 \text{fb}^{-1}]$ observation of Ξ_c'

$$\Xi_{c}^{\prime +} \rightarrow \Xi_{c}^{+} \gamma$$

$$\mapsto \Xi^{-} \pi^{+} \pi^{+}$$

$$\mapsto \Lambda \pi^{-}$$

$$\Xi_{c}^{\prime 0} \rightarrow \Xi_{c}^{0} \gamma$$

$$\mapsto \Xi^{-} \pi^{+}$$

 Charm baryons produced in e⁺e⁻ continuum (p*≥2 GeV/c) and in B decays (p* ≤ 2 GeV/c)

Ξ_{c}' Momentum Spectra

- Substantial B meson decay to $\Xi_{c}^{\prime+,0}$
 - first observation of these decays
 - stat. significance > 12σ
- Product branching fractions $BF(B \to \Xi_c^{\prime +} X) \times BF(\Xi_c^{+} \to \Xi^{-} \pi^{+} \pi^{+})$ $= [1.69 \pm 0.17(\exp) \pm 0.10(\text{model})] \times 10^{-4}$ $BF(B \to \Xi_c^{\prime 0} X) \times BF(\Xi_c^{0} \to \Xi^{-} \pi^{+})$ $= [0.67 \pm 0.07(\exp) \pm 0.03(\text{model})] \times 10^{-4}$
- Cross sections at $\sqrt{s}=10.58 \text{ GeV}$ $\sigma(e^+e^- \rightarrow \Xi_c^{\prime +}X) \times BF(\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+)$ $= [141 \pm 24(\exp) \pm 19(\text{model})] \text{ fb}$ $\sigma(e^+e^- \rightarrow \Xi_c^{\prime 0}X) \times BF(\Xi_c^0 \rightarrow \Xi^- \pi^+)$ $= [70 \pm 11(\exp) \pm 6(\text{model})] \text{ fb}$

Light Quark Spectroscopy

Excited Cascades produced in charm baryon decays

Resonant Structures in the $\Lambda_{\rm c}{}^+ \to \Xi^{\scriptscriptstyle -} \, \pi^{\scriptscriptstyle +} \, {\rm K}^{\scriptscriptstyle +}$ Signal Region

Only **obvious** structure:

 $\Xi (1530)^0 \rightarrow \Xi^- \pi^+$

Rectangular Dalitz plot

Phys.Rev.D78:034008,2008

<u>Note</u>: $m^2(\Xi^- K^+)$ depends linearly on $\cos \Theta_{\Xi}$

Using Legendre Polynomial Moments to Obtain **E(1530)** Spin Information

• Other interesting aspects of Dalitz plot – not as simple as it first appears !

20

The $\Xi(1690)^0$ from $\Lambda_c^+ \to (\Lambda K_S) K^+$ Decay

Using Legendre Polynomial Moments to Obtain **E(1690)** Spin Information

Concluding Remarks

Charmed baryon mass

- Lots of progress in charm baryon spectroscopy
- Insight into charm baryon production
- Measurements of charm baryon spin from exclusive **B** decay processes
- Insight into light quark spectroscopy from hyperon resonances produced in charm baryon decay

Concluding Remarks

- Future experiments expected to provide large charm baryon samples to further our understanding of heavy flavor baryons
 - LHCb
 - Super-B
 - GlueX [associated production; e.g. $\gamma p \rightarrow \Lambda_c^+ \overline{D}^0$]

BACKUP SLIDES

BaBar-GlueX Comparisons

Reminder:

(*) Would also like to reconstruct Ξ^0 . [Note: Ist Ω^- event in BC was $\Omega^- \rightarrow \Xi^0 \pi^-$]

- Large acceptance, multi-pupose detector
 - Acceptance: $-0.92 < \cos\theta^* < 0.85$ (θ^* : c.m.s. polar angle w.r.t. collision axis)
- Excellent charged particle tracking (SVT & Drift Chamber) and P.I.D. (& DIRC)
- Excellent γ measurement (i.e. $\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$, etc.) in EMC

Excellent Vertex Reconstruction Capability (1)

233 fb⁻¹ e⁺ e⁻ data

Excellent Vertex Reconstruction Capability (2)

Excellent Vertex Reconstruction Capability (3)

Chew-Low Plot Acceptance

Possible Ξ Studies with GlueX

- 1. Survey Processes to Provide an Overview of $\Xi(*)$ Photoproduction
 - Inclusive Ξ^- (Ξ^0 ?) Production
 - Feynman \boldsymbol{x} and p_T^2 distributions
 - Chew-Low plot(s)
 - Polarization measurements
 - Etc...
 - Similar Studies for Cascade Resonance Production (e.g. $\Xi(1530) \rightarrow \Xi^{-}\pi^{+}$) and Associated Spectra
 - <u>Note</u>: In the LASS search for Ω^{*-} states, the inclusive mass distribution for (Ξ⁻π⁺K⁻) showed nothing; however when the (Ξ⁻π⁺) was selected to correspond to the Ξ(1530)⁰, a signal for the Ω(2250)⁻ was observed.

Possible Ξ Studies with GlueX (ctd.)

2. Exclusive t-channel (i.e. meson exchange) Processes

• Production of two-body systems with a Ξ

e.g. $\gamma p \rightarrow K^+ (\Xi^- K^+)$ $\rightarrow K^+ (\Xi^0 K^0)$ $\rightarrow K^0 (\Xi^0 K^+)$

would enable the study of high mass Λ^* and Σ^* states decaying via these Ξ modes.

Possible Ξ Studies with GlueX (ctd.)

Production of three-body systems with a Ξ , or a Ξ^* system with two-body decay:

with a forward K^0 : $\Sigma *, \Lambda *$ e.g. $\gamma p \rightarrow K_{-}^{0}(\Xi^{-}\pi^{+}) K^{+}, K^{0}(\Xi^{0}\pi^{0}) K^{+}, K^{0}(\Xi^{0}K^{0})$ $\gamma p \rightarrow K^0 X$ 12 States analyzed $\longrightarrow K^0$ ($\Lambda \overline{K^0}$) K^+ $X = \Xi^- \pi^+ K^-$ - can observe in a totally different context in Λ_c^+ decay -t (GeV/c)² with a forward K^+ : $\Pi(\Lambda_{c}^{+})$ e.g. $\gamma p \rightarrow \mathbf{K}^+ (\Xi^- \pi^+) \mathbf{K}^0, \mathbf{K}^+ (\Xi^- \pi^0) \mathbf{K}^+$ 2.2 2.4 2.6 2.8 3.2 3 \rightarrow K⁺ ($\Xi^0 \pi^-$) K⁺, K⁺ ($\Xi^0 \pi^0$) K⁰ m_y (GeV/c²)

e.g. $\gamma p \rightarrow \mathbf{K}^+ (\Lambda \mathbf{K}^- \pi^+) \mathbf{K}^+$,

accessible at BaBar via $\Xi_c^0 \rightarrow \Lambda K^- \pi^+$, complicated Dalitz plot

3.4

36

Fit Results: $(K^+ K_S) \& (\Lambda K_S)$ Mass Projections

1.62

.64

1.66

1.68

1.7

1.78

1.8

1.76

 $m(\Lambda K^+) (GeV/c^2)$

1.72

1.74

cosine

Comparison of Max. Likelihood Fit Result to the Signal Projections

Under the assumption of spin 3/2 for the $\Xi(1690)$:

$$I = pq C \left[p_0^2 I_1 \left(\frac{3\cos^2 \theta_A + 1}{4} \right) + \frac{g_{KK}^2 I_2}{2} + \frac{k}{\sqrt{2}} \left(\cos \theta_A \right) p_0 g_{KK} I_1 I_2 \left[(M_1 M_2 + G_1 G_2) \cos \delta + (G_1 M_2 - G_2 M_1) \sin \delta \right] \right]$$

$$\chi^2 / \text{NDF} = 234.3/192$$
C. L. = 1.9 %
$$BABAR = \frac{1}{162} \frac{1}{1.64} \frac{1}{1.66} \frac{1}{1.66} \frac{1}{1.7} \frac{1}{1.72} \frac{1}{1.74} \frac{1}{1.76} \frac{1}{1.76} \frac{1}{1.76} \frac{1}{1.72} \frac{1}{1.74} \frac{1}{1.76} \frac{1}{1.76} \frac{1}{1.66} \frac{1}{1.66} \frac{1}{1.66} \frac{1}{1.7} \frac{1}{1.72} \frac{1}{1.74} \frac{1}{1.76} \frac{1}{1.76}$$

Entries/ 5 MeV/c²

⇒ Equiv. to incoherent superposition of amplitudes

Lineshape skewing not reproduced!

Comparison of Max. Likelihood Fit Result to the Signal Projections

Under the assumption of spin 5/2 for the $\Xi(1690)$:

Summary of Results & Systematic Uncertainties

Source	Estima	Estimated Systematic Uncertainty			Spin	1/2
Background Normalizatio	n and $\Xi(1690)$	and $\Xi(1690)^{\circ}$ Mass [MeV/c ²]			0.0	_
Parametrization	Parametrization $\Xi(1690)^{\circ}$ Width [MeV]		n [MeV]		± 0.2	
Resolution Function	Resolution Function $\Xi(1690)^{\circ}$ Mass [MeV/c ²]			0.0	_	
Lineshape	$\Xi(1690)^{\circ}$ Width [MeV]			± 0.1		
Efficiency	$\Xi (1690)^0 \text{ Mass } [\text{MeV/c}^2]$				± 0.1	_
Parametrization	$\Xi(1690$	$\Xi(1690)^{\circ}$ Width [MeV]			± 0.1	_
Orbital Ang. Momentum	$\Xi(1690$	$0)^0$ Mass	$[MeV/c^2]$		± 0.2	
Variation	$\Xi(1690$	0)° Width	n [MeV]		± 0.1	_
$a_0(980)^+$ Parameter	$\Xi(1690$	$0)^0$ Mass	$[MeV/c^2]$		± 0.1	
Values	$\Xi(1690$	$\Xi(1690)^{\circ}$ Width [MeV]			± 0.3	
Detector	$\Xi(1690$	$\Xi (1690)^0 { m ~Mass} { m [MeV/c^2]}$			± 0.1	
Effects	$\Xi(1690$	$\Xi(1690)^{\circ}$ Width [MeV]			0.0	
Total Systematic	$\Xi(1690)$	$\Xi (1690)^0 \text{ Mass } [\text{MeV/c}^2]$			± 0.3	_
Uncertainty	$\Xi(1690$	$\Xi(1690)^{\circ}$ Width [MeV]			± 0.4	
$\Xi(1690)$ $\Xi(1690)$ Mass	三(1690) Width	k	δ	χ^2/NDF	C.L.	_
Spin [MeV/c ²]	[MeV]		[rad]	~ ~ ~	(%)	
1/2 1682.9 ± 0.9	9.3 ± 1.9	0.4 ± 0.2	0.3 ± 0.5	188.4/192	56.4	
vored $3/2$ 1684.9 \pm 0.8	8.8 ± 2.1	0.2 ± 0.2	-2.7 ± 1.1	234.3/192	1.9 🗲	C.L.
5/2 1684.9 ± 0.8	9.0 ± 2.0	0.9 ± 0.2	2.4 ± 0.2	210.3/192	17.4	

➤ Fail to reproduce skewed lineshape; fit mass value moves higher in attempt to compensate

Sp

fa

MIGRAD FIT PARAMETER VALUES

Fit Parameter	Value	Neg. Error	Pos. Error
$\Xi(1690)$ Ampl. Rel. Strength [MeV] (p_0)	24 ± 8	_	_
$\Xi(1690)$ Mass [MeV/c ²]	1682.9 ± 0.9	-0.9	+0.9
$\Xi(1690)$ Width [MeV]	9.3 ± 1.9	-1.7	+2.0
Effective Phase δ [rad.]	0.3 ± 0.5	-0.4	+0.6
Effective Scale k	0.4 ± 0.2	-0.2	+0.3
Overall Normalization Factor	1205 ± 726	_	_
$g_{\bar{K}K}$ [MeV]	349 ± 136	_	_
Coupling Ratio Squared (r^2)	0.5 ± 0.4	_	_

Fit χ^2 /NDF = 188.4/192 Prob. = 56.4%

SLAC-R-868

Weak dependence on $\cos\theta_{\Lambda}$

Isobar Model Description of the $\Lambda_c^+ \to \Lambda \ \overline{K}{}^0 \ K^+$ Dalitz Plot

Isobar Model Description of the $\Lambda_c^+ \to \Lambda \ \overline{K}{}^0 \ K^+$ Dalitz Plot

Partial wave amplitude description of the $(\Xi^-\pi^+)$ system produced in the decay $\Lambda_c^+ \rightarrow \Box \Xi \pi^+ K^+$

$$I = \sum_{\substack{y_1 \neq 1/2 \\ \lambda_1 \neq 1/2}} \rho_{\lambda_1} \left| d_{\lambda_1 \lambda_1}^{1/2} (\theta) A_{\lambda_1}^{3/2} + d_{\lambda_1 \lambda_2}^{3/2} (\theta) A_{\lambda_1}^{3/2} \right|^2 + \left| d_{12 - 1/2}^{1/2} (\theta) A_{1/2}^{3/2} + d_{12 - 1/2}^{3/2} (\theta) A_{1/2}^{3/2} \right|^2 + \left| d_{12 - 1/2}^{1/2} (\theta) A_{1/2}^{3/2} \right|^2 + \left| d_{12 - 1/2}^{3/2} (\theta) A_{1/2}^{3/2} \right|^2 + \left| d_{1/2}^{3/2} (\theta) A_{1/2}^{3/2} \right|^2 + \left| d_$$

Amplitude Analysis Assuming S and P Waves

Implication of Fits to the $\Xi(1530)^0$ Lineshape

 $J_{\Omega} \ge 7/2$ also excluded: angular distribution increases more steeply near $\cos\theta \sim \pm 1$ and has $(2 J_{\Omega} - 2)$ turning points.

Exclusive B Decay Processes

Measurements of BF($\overline{B}^0 \rightarrow \Xi_c \overline{\Lambda}_c^-$) and BF($\overline{B}^0 \rightarrow \Lambda_c^+ \overline{\Lambda}_c^- \overline{K}$)

PHYSICAL REVIEW D 77, 031101(R) (2008)

- Predictions for B decays to final states with 2 charm baryons $O(10^{-3})$
- Belle measurement for BF($\mathbf{B} \rightarrow \Xi_c \overline{\Lambda}_c$) of ~1% comparable with predictions

Belle Collaboration, R. Chistov et al., Phys. Rev. D 74, 111105 (2006).
Belle Collaboration, N. Gabyshev et al., Phys. Rev. Lett. 97, 202003 (2006).

- B decays to final states with only singly-charm final states $\sim O(10^{-5})$ Belle Collaboration, N. Gabyshev *et al.*, Phys. Rev. Lett. 90, 121802 (2003).
- Rate difference due to final state interactions or intermediate charmonium resonances ?
- Use of 3-body decay to study Λ_c⁺Λ_c⁻K to investigate resonant structures
 ▶ BF measurement consistent with predictions
 - ≥ 2-body mass projections indicative of Ξ_c^{0} resonant decay contribution

A Precision Measurement of the Λ_c^+ Mass Using low Q-value decay modes

Combined measurement

 $m(\Lambda_c^+) = 2286.46 \pm 0.14 \text{ MeV/c}^2$

PDG 2004: 2284.9 ± 0.6 MeV/c²

Baryon (decaying to a Λ_c^+) masses estimated as mass differences w.r.t. the Λ_c^+ with PDG Λ_c^+ mass added \rightarrow more precise Λ_c^+ mass measurement affects these baryon mass measurements